Published 4:28 PM by Admin with 0 comment

Pengertian, Jenis, Cara Kerja dan Penggunaan Solenoida (Solenoid)

Ada beberapa pengertian tentang solenoid atau juga sering disebut dengan solenoida. Secara sederhana, solenoida merupakan salah satu dari sekian banyak transduser, yaitu alat atau perangkat elektromagnetik yang dapat merubah sebuah energi asal menjadi bentuk energi lain. Sebuah solenoida dapat terdiri dari beberapa lilitan. 

Solenoida dibuat dari gulungan kawat logam yang bersifat konduktif yang disusun dengan perhitungan tertentu sehingga membentuk sebuah kumparan yang kemudian dialiri arus listrik. Kemudian di dalam koil tersebut diisi batang besi silinder untuk memperbesar medan magnet yang dihasilkan. 

Apabila solenoid difungsikan, dia dapat bekerja merubah energi listrik menjadi energi gerak yang diperoleh dari perubahan energi listrik menjadi energi gerak yang dihasilkan oleh solenoid adalah gerakan menarik (pull), mendorong (push) dan berputar (rotasi). 

Gambar-Solenoida

Hal tersebut dapat dipahami dengan mudah dengan melihat rangkaian solenoida yang terdiri dari kumparan listrik yang dililitkan pada tabung berbentuk silinder dengan aktuator ferro-magnetic atau Plunger yang bebas bergerak keluar masuk dari kumparan. Rangkaian solenoida dapat digunakan untuk menggerakan mekanisme robotik, misalnya pada sakelar listrik, untuk membuka dan menutup pada pintu otomatis, untuk membuka dan menutup katup (valve) dan lain-lain. 

Solenoida yang dapat digunakan untuk membuka dan menutup katup disebut dengan Solenoid Katup (Solenoid Valve).

Jenis-Jenis Solenoida (Solenoid)


Secara dasar, solenoida tersedia dalam 2 jenis, yaitu

1. Solenoida Linier atau Linear Electro Mechanical Actuator (LEMA)
2. Solenoida Rotasi atau Rotary Solenoida

1. Solenoida Linier (Linear Solenoida)


Solenoida Linier adalah perangkat bersifat elektromagnetik yang bekerja merubah energi listrik menjadi energi gerak/ mekanis.

Mengapa disebut sebagai solenoida linier? 

Karena actuator atau plungernya bergerak maju-mundur secara linier. Solenoid jenis ini tersedia dalam 2 jenis yaitu;

1. Solenoida Linier Tarik (Pull Type)


Ketika bekerja, solenoida jenis ini menarik plunger kearahnya.

2. Solenoida Linear tipe Dorong (Push Type)


Ketika bekerja, solenoida jenis ini mendorong plunger kearahnya

Solenoida linier tipe tarik dan tipe dorong memiliki konfigurasi bentuk yang hampir sama, perbedaannya adalah pada peletakan plunger dan pegasnya.

Cara Kerja Solenoida Linier


Sebuah koil yang diberi arus listrik akan menciptakan medan magnet yang akan menarik plunger yang ada dalam koil tersebut sehingga masuk ke pusat koil dan akan menekan pegas yang ada pada ujung plunger tersebut. Besarnya daya dan kecepatan pergerakan plunger tersebut dipengaruhi oleh besarnya kekuatan magnetik yang dihasilkan.

Sebaliknya, bila pasokan arus listrik diputuskan, tarikan yang dihasilkan dari medan elektromagnet akan hilang sehingga pegas akan merenggang lalu mendorong plunger hingga kembali ke posisi semula.

Solenoida Linier ini sangat berguna dan banyak digunakan di aplikasi yang memerlukan gerakan “Tutup” dan “Buka” atau “Keluar” dan “Masuk” seperti pada kunci pintu yang dioperasikan secara elektronik, kontrol katup pneumatik atau hidrolik, robotika, mesin otomotif, pintu irigasi dan lain-lain.

2. Solenoida Rotasi (Rotary Solenoida)


Selain Solenoida linier yang menghasilkan gerakan maju dan mundur secara linier, ada juga solenoid rotasi, yaitu solenoida yang menghasilkan gerakan memutar searah jarum jam atau berlawanan dengan arah jarum jam.

Solenoid rotasi digunakan untuk mengantikan motor DC, terutama motor yang pergerakannya memiliki sudut yang kecil. Berdasarkan sudut pergerakannya. Solenoid rotasi yang paling sering dipakai adalah solenoid dengan sudut gerakan 25⁰, 35⁰, 45⁰, 60⁰ dan 90⁰.

Cara Kerja Solenoida Rotasi


Ketika koil dialiri listrik, maka polaritas medan elektromagnetiknya akan berubah sehingga solenoid menghasilkan gerakan berputar. Solenoid rotasi terdiri dari beberapa koil yang dililitkan pada baja dengan disk magnetik yang disatukan dan diletakkan pada output di atas rangkain koil.

Ketika koil dialiri arus listrik, kumparan akan menghasilkan medan elektromagnetik sehingga terbentuk kutub utara dan kutub selatan yang akan saling bertolakan sehingga menyebabkannya perputaran pada sudut yang sudah ditentukan dalam pembuatan solenoid rotasi.

Penggunan Solenoid Pada Kehidupan Sehari-hari:


1. Bel listrik 


Pada bel listrik, ketika solenoid dialiri arus listrik, besi dalam rangkain bel listrik akan menjadi magnet, lalu menarik besi lentur yang lalu bergerak hingga memukul dinding bel, sehingga mengeluarkan bunyi. 

Kemudian, berubahnya posisi besi lentur tersebut menyebabkan arus listrik terputus, sehingga gaya magnet pada besi akan hilang, lalu kepingan besi lentur tersebut akan kembali ke posisi semula, sehingga kembali teraliri listrik dan terjadi medan magnet yang akan membuat besi kembali tertarik ke dinding bel. Pergerakan tersebut akan terjadi berulang ulang dengan cepat sehinggal bel akan terus berbunyi selama dialiri listrik. 

2. Speaker


Pada speaker terdapat 2 magnet, yaitu magnet permanen dan elektromagnet yang dihasilkan oleh solenoid. Elektromagnet dan magnet permanen saling berinteraksi. Kutub positif yang ada pada elektromagnet tertarik dengan kutub negatif yang ada pada magnet permanen. 

Sebaliknya, kutub negatif yang ada pada elektromagnet ditolak oleh kutub negatif yang ada magnet permanen. Kemudian terjadilah pertukaran orientasi kutub electromagnet, sehingga arah gaya tarik menariknya juga ikut bertukar. Dengan cara ini, arus bolak balik memberikan dorongan secara konstan pada magnet koil suara dan magnet permanen.

3. Pesawat Telepon


Secara garis besar, pesawat telepon terdiri atas 2 bagian, yaitu mikrofon dan speaker. Mikrofon bekerja merubah gelombang suara menjadi gelombang listrik. Ketika seseorang berbicara, gelombang suara akan tertangkap pada mikrofon akan membuat diafragma alumunium bergetar. 

Serbuk karbon yang ada pada mikrofon berubah-rubah sehingga terjadi gelombang listrik yang kemudian dikirim ke penerima pada pesawat telepon lain, lalu diterima oleh speaker. Oleh speaker, gelombang listrik tersebut menggerakkan membran sehingga akan menghasilkan suara.

4. Kunci Pintu Listrik


Kunci pintu listrik bekerja menggunakan gaya elektromagnetik. solenoida yang ada pada kunci listrik dihubungkan ke saklar. Ketika kita menghubungkannya dengan sumber listrik dengan menekan sakelarnya, arus listrik akan mengalir ke solenoid sehingga terjadi gaya elektromagnetik yang akan menarik solenoida sehingga pintu dapat dibuka. Sebaliknya, pada saat solenoid tidak dialiri listrik, pintu akan kembali terkunci.

5. Detektor Logam


Detektor logam digunakan untuk memeriksa keberadaan logam atau bahkan semua benda yang dapat bereaksi ketika menerima gaya elektromagnet. Detektor logam terdiri dari kumparan besar yang dialiri arus listrik sehingga terjadi gaya elektromagnet. Ketika ada logam yang berdekatan dengan detektor logam, dia akan merubah besarnya gaya elektromagnetik yang ada pada solenoid yang dihubungkan dengan alarm, sehingga memicu alarm untuk mengeluarkan bunyi.

Demikianlah penjelasan tentang Pengertian, Jenis, Cara Kerja dan Penggunaan Solenoid (Solenoida). Semoga bermanfaat untuk menambah pengetahuan Anda.

      edit
Published 5:40 PM by Admin with 0 comment

Spektrum Elektromagnetik adalah - Pengetian, Jenis & Cara Mengukur Spektrum EM

Spektrum elektromagnetik (EM) adalah kisaran semua jenis radiasi eletkromagnetik. Radiasi adalah energi yang bergerak dan menyebar saat berjalan, contohnya seperti cahaya tampak yang berasal dari lampu di rumah kamu atau gelombang radio yang berasal dari stasiun radio adalah dua jenis radiasi elektromagnetik. Beberapa jenis lain dari radiasi elektromagnetik (EM) yang membentuk spektrum elektromagnetik adalah cahaya inframerah, gelombang mikro, sinar ultraviolet, sinar-X dan sinar gamma.

Jenis Spektrum Elektromagnetik 


Tahukah kamu, sebenarnya spektrum elektromagnetik bisa ditemukan dalam kehidupan sehari-hari khususnya pada peralatan-peralatan umum disekitar kita. Berikut ini jenis spektrum elektromagnetik yang terlihat pada gambar dibawah ini

Gambar-Jenis-Spektrum-Elektron


  • Radio: Radio berguna dalam menangkap gelombang radio yang dipancarkan oleh stasiun radio, sehingga kamu dapat mendengarkan lagu. Disamping itu, gelombang radio juga dipancarkan oleh bintang dan gas di ruang angkasa
  • Microwave: Dengan adanya radiasi microwave maka kamu dapat memasak makanan didalamnya dalam beberapa menit, disamping itu peralatan microwave juga digunakan oleh para astronom untuk mempelajari tentang struktur galaksi terdekat.
  • Inframerah: Salah satu contohnya adalah kacamata penglihatan malam. Kacamata penglihatan malam mengambil cahaya inframerah yang dipancarkan oleh kulit dan benda-benda kita dengan panas. Disamping itu inframerah juga digunakan di ruang angkasa, cahaya inframerah dapat membantu dalam memetakan debu di antara bintang-bintang.
  • Cahaya Tampak : Mata kita dapat mendeteksi cahaya tampak. cahay dari kunang-kunang, bola lampu, dan bintang semua memancarkan cahaya tampak.
  • Ultraviolet: Radiasi ultraviolet atau radiasi UV dipancarkan oleh Matahari, disamping itu, benda-benda yang "panas" di ruang angkasa juga memancarkan radiasi UV.
  • X-ray: Dengan menggunakan sinar-X dokter gigi dapat  memperlihatkan gambaran gigi, selain itu pada pemeriksaaan untuk keamanan di bandara, sinar-X digunakan utnuk mengecek isi tas penumpang. Disamping itu, gas panas yang ada di Alam Semesta juga memancarkan sinar-X.
  • Sinar gamma: Salah satu contoh penggunaan sinar gamma adalah dalam bidang medis, dokter menggunakan pencitraan sinar gamma untuk melihat bagian dalam tubuh pasien. Generator sinar gamma terbesar yaitu alam Semesta.

Apakah Gelombang Radio Sama Dengan Sinar Gamma?


Yang harus kamu pahami adalah gelombang radio dengan sinar gamma dihasilkan dalam proses yang berbeda selain itu dideteksi dengan cara yang berbeda, tetapi keduanya pada dasarnya tidak berbeda. Gelombang radio, sinar gamma, sinar X, cahaya tampak, dan jenis spektrum elektromagnetik lainnya adalah radiasi elektromagnetik.

Radiasi elektromagnetik dapat digambarkan sebagai aliran partikel tanpa massa, yang disebut foton, masing-masing bergerak dalam pola seperti gelombang dengan kecepatan cahaya. Setiap foton mengandung sejumlah energi. Berbagai jenis radiasi ditentukan oleh jumlah energi yang ditemukan dalam foton. 

Gelombang radio memiliki foton dengan energi rendah, foton dari gelombang mikro wave memiliki lebih banyak energi daripada gelombang radio, foton inframerah masih lebih banyak, kemudian selanjutnya sesuai urutan yaitu ultraviolet, sinar-X, dan, yang memiliki energi terbesar dari semuanya yaitu sinar gamma.

Mengukur Radiasi Elektromagentik


Radiasi elektromagnetik dapat dinyatakan dalam bentuk energi, panjang gelombang, atau frekuensi. Frekuensi diukur dalam siklus per detik, atau Hertz. Panjang gelombang diukur dalam meter. Energi diukur dalam volt elektron. Masing-masing dari ketiga variabel yang telah disebutkan diatas digunakan dalam menggambarkan radiasi elektromagnetik dan saling berkaitan satu sama lain secara matematis. 

Gambar-Panjang-Radiasi-Elektromagnetik

Tetapi mengapa radiasi elektromagnetik diukur dengan 3 cara ?

Jawaban singkatnya adalah umumnya para ilmuwan tidak suka menggunakan angka yang lebih besar atau lebih kecil dari yang seharusnya. Maksudnya jauh lebih mudah untuk mengatakan atau menulis "dua kilometer" daripada "dua ribu meter."

Astronom yang mempelajari gelombang radio cenderung menggunakan panjang gelombang atau frekuensi. Sebagian besar bagian radio dari spektrum EM berada dalam kisaran dari sekitar 1 cm hingga 1 km, yaitu 30 gigahertz (GHz) hingga 300 kilohertz (kHz) dalam frekuensi. Radio adalah bagian yang sangat luas dari spektrum elektromagnetik.

Astronom inframerah dan optik umumnya menggunakan panjang gelombang. Para astronom inframerah menggunakan mikron (sepersejuta meter) untuk panjang gelombang, sehingga bagian dari spektrum elekromagnetik jatuh dalam kisaran 1 hingga 100 mikron. 

Astronom optik menggunakan angstrom (0,00000001 cm, atau 10-8 cm) dan nanometer (0,0000001 cm, atau 10-7 cm). Menggunakan nanometer, violet, biru, hijau, kuning, oranye, dan lampu merah memiliki panjang gelombang antara 400 dan 700 nanometer. (kisaran ini hanyalah sebagian kecil dari seluruh spektrum elektromagnetik, sehingga cahaya yang dapat dilihat mata kita hanyalah sebagian kecil dari semua radiasi elektromagnetik di sekitar kita.)

Panjang gelombang dari ultraviolet, sinar-X, dan sinar gamma dari spektrum elektromagnetik sangat kecil. Daripada menggunakan panjang gelombang, para astronom yang mempelajari bagian-bagian ini dari spektrum elektromagnetik biasanya merujuk pada foton dengan jumlah energi yang dimiliki, diukur dalam elektron volt (eV). 

Radiasi ultraviolet berada dalam kisaran dari beberapa volt elektron hingga sekitar 100 eV. Foton sinar-X memiliki energi dalam kisaran 100 eV hingga 100.000 eV (atau 100 keV), terakhir yaitu foton Sinar-gamma memiliki energi lebih besar dari 100 keV.

Mengapa kita menempatkan teleskop di orbit?


Atmosfer bumi akan memblok sebagian besar jenis radiasi elektromagnetik dari ruang angkasa untuk mencapai permukaan Bumi. Gambar dibawah ini menunjukkan seberapa jauh radiasi elektromagnetik dapat mencapai permukaan bumi, sebelum akhirnya menghilang dan diserap di atmosfer. Dari beberapa jenis radiasi elektromagnetik hanya gelombang radio dan cahaya tampak yang mencapai permukaan bumi.

Gambar-Spektrum-Elektromgnetik-Di-Atmosfer

Kebanyakan radiasi elektromagnetik dari ruang angkasa tidak dapat mencapai permukaan bumi. Para astronom dapat mengamati beberapa panjang gelombang inframerah dengan meletakkan teleskop di puncak gunung. 

Beberapa cara lain yaitu dengan menggunakan balon udara dapat mencapai 35 km di atas permukaan dan dapat beroperasi selama berbulan-bulan, adapun dengan menggunakan roket dapat bergerak jauh di atas atmosfer Bumi, tetapi hanya untuk beberapa menit sebelum akhirnya jatuh kembali ke Bumi.

Namun, untuk pengamatan jangka panjang, cara terbaik untuk mengamati radiasi aau spektrum elektromagnetik adalah dengan menggunakan detektor di satelit yang mengorbit. 

      edit
Published 8:16 PM by Admin with 0 comment

Elektromaget adalah - Pengertian, Cara Membuat Elektromagnet & Aplikasinya

Elektromagnet adalah magnet yang beroperasi terhadap arus listrik. Tidak seperti magnet permanen, kekuatan magnet dari elektromagnet dapat dengan mudah diubah dengan cara mengubah jumlah arus listrik yang mengalir melaluinya. Kutub-kutub elektromagnet bahkan dapat dibalik dengan membalik aliran listrik.

Pengertian Elektromagnet


Elektromagnet adalah magnet yang dibuat ketika listrik mengalir melalui konduktor, dengan kata lain, sebuah elektromagnet bekerja karena arus listrik menghasilkan medan magnet dimana. Medan magnet yang dihasilkan oleh arus listrik membentuk lingkaran di sekitar arus listrik, seperti yang ditunjukkan pada diagram di bawah ini:

Tampak Depan

Gambar-Elektromagnet

Tampak Samping

Gambar-Elektromagnet-Arah-Medan-Magnet

Jika kawat yang dialiri arus listrik dibentuk menjadi serangkaian loop, maka medan magnet dapat terkonsentrasi di dalam loop tersebut. Medan magnet dapat diperkuat lagi dengan melilitkan kawat ke sekeliling inti. Atom-atom dari bahan tertentu, seperti nikel, besi dan kobalt dapat berperilaku seperti sebuah magnet kecil. 

Umumnya, atom-atom yang berada dalam gumpalan titik besi akan memilih arah acak dan medan magnet itu sendiri cenderung akan saling membatalkan atau menolak satu sama lain. Namun, medan magnet yang dihasilkan dari kawat yang melilit inti dapat memaksa beberapa atom dalam inti untuk menunjuk ke satu arah. Semua medan magnet kecil akan bergabung bersama dan menciptakan medan magnet yang lebih kuat.

Saat arus yang mengalir di sekitar inti meningkat, maka jumlah atom yang selaras akan meningkat dan semakin mempekuat medan magnetnya sampai ke titik tertentu. Cepat atau lambat, semua atom yang dapat disejajarkan akan saling sejajar. Pada titik ini, magnet dapat dikatakan jenuh dimana ketika arus listrik yang mengalir di sekitar inti ditingkatkan, tidak akan lagi mempengaruhi magnetisasi inti itu sendiri.

Cara Membuat Elektromagnet


1. Kumpulkan Bahan Yang Diperlukan


Untuk membuat sebuah elektromagnet sederhana, yang kamu butuhkan adalah
Sebuah paku berukuran 15 cm
Kawat tembaga atau kabel secukupnya (Untuk melilit paku)
Sebuah baterai

2. Kupas Ujung Kabel


Agar arus listrik dari baterai dapat mengalir ke kawat maka kupas isolasi kabel beberapa sentimeter

3. Lilitkan Kabel ke Pake


Gambar-Cara-Membuat-Elektromagnet

Lanjutkan dengan melilitkan kabel ke paku, ingat bahwa semakin banyak jumlah lilitannya maka akan semakin besar pula elektromagnet yang dihasilkan. Saat melilitkannya, pastikan kamu melilitkannya ke satu arah mengingat arah medan magnet tergantung dari arah arus listrik, lihat lagi gambar dibawah untuk mengetahui arah medan magnet, apakah searah jarum jam atau berlawan dengan arah jarum jam.

Gambar-Cara-Membuat-Elektromagnet-2

4. Hubungkan Ke Baterai


Pasang kedua ujung kabel tersebut masing-masing ke terminal positif dan negatif baterai, jika pemasangnnya benar maka elektromagnet akan tercipta.

Untuk pemasangannya, tidak perlu terlalu memikirkan terminal positif atau negatif baterai karena magnet tetap akan bekerja dengan baik, yang berubah adalah polaritas magnet yang kamu buat.

Aplikasi / Kegunaan Elektromagnet


Berikut ini adalah aplikasi elektromagnet dalam kehidupan
  • Generator, motor, and transformer
  • Bel listrik
  • Handphone dan pengeras suara
  • Relay dan valve (katup)
  • Penyimpan data seperti VCR dan tape recorder
  • Kompor induksi
  • Kunci magent
  • Mesin MRI
  • Akselerator partikel dan spektrometer massa


      edit
Published 9:14 PM by Admin with 0 comment

Limit Switch adalah - Pengertian, Jenis & Cara Kerja Limit Switch

Apa itu limit switch? tentu pertanyaan ini bakal muncul bagi yang belum pernah melihat limit switch. Secara sederhana limit switch adalah sebuah saklar elektromekanis yang bekerja berdasarkan pergerakan atau keberadaan suatu objek. Yang harus kamu pahami bahwa limit switch atau saklar pembatas berbeda dengan saklar listrik pada umumnya.

Pengertian Limit Switch / Saklar Pembatas


Limit switch adalah perangkat elektro-mekanis yang terdiri dari aktuator yang terhubung secara mekanis ke sekumpulan kontak. Ketika sebuah objek bersentuhan dengan aktuator, limit switch akan mengoperasikan kontak untuk menghubungkan atau memutuskan aliran arus listrik. Limit switch digunakan dalam berbagai aplikasi dan lingkungan karena ketangguhannya, tidak rumit, mudah dalam pemasangan serta memiliki keandalan operasional.

Seperti yang telah dijelaskan, limit switch akan mendeteksi gerakan fisik suatu objek melalui kontak langsung dengan objek tersebut. Contoh limit switch adalah sakelar yang mendeteksi posisi terbuka pintu mobil, secara otomatis memberi energi pada lampu kabin ketika pintu terbuka.

Simbol Limit Switch


Yang harus kamu pahami dari simbol limit switch adalah status "normal" dari sakelar yaitu kondisi istirahat tanpa stimulasi. limit switch akan berada dalam status "normal" ketika tidak ada kontak dengan apa pun (maksudnya tidak ada yang menyentuh mekanisme aktuator sakelar).

Jenis Limit Switch


Limit switch tersedia dalam berbagai macam sesuai bodi saklar, gaya lengan putar, syarat operasi/pengunaan serta faktor lingkungan seperti suhu, kelembaban, kontaminasi, getaran dan guncangan.

Beberapa faktor lainnya ketika memiliki limit switch diantaranya kekuatan operasi, kemampuan reset, over-travel, pre-travel, serta persyaratan keselamatan. Limit switch memiliki 4 jenis kategori yaitu:

Global Limit Switch

Merupakan jenis limit switch yang paling umum dipakai diseluruh dunia. Global limit switch dirancang berdasarkan standar IEC untuk penerimaan di seluruh dunia. Global limit switch terbuat dari logam atau plastik dan tersedia dalam berbagai seri berdasarkan spesifikasi listrik, aktuator, terminasi, rangkaiannya, dan tingkat penyegelan.

Global limit switch umumnya digunakan untuk

Mesin cetak injeksi, peralatan alat mesin, antarmuka PLC, lift, eskalator/tangga berjalan, mesin game, penanganan material, pintu industri, peralatan pengemasan dan tekstil, makanan dan minuman, gunting dan lift platform serta peralatan perakitan elektronik.

Medium-Duty Limit Switch

Merupakan jenis limit switch yang dirancang untuk berbagai aplikasi indoor dan outdoor. Sama seperti limit switch pada umumnya, jenis saklar ini juga tersedia dalam berbagai seri berdasarkan spesifikasi listrik, aktuator, terminasi, rangkaiannya, dan tingkat penyegelan.

Medium-Duty limit switch digunakan untuk

Sebagai deteksi kehadiran / ketidakhadiran suatu objek, serta aplikasi yang membutuhkan pengulangan yang akurat seperti crane, disamping itu juga dipakai dalam mesin stamping, pengemasan dan peralatan penggerak tanah,  konveyor, transportasi, mesin tekstil, peralatan cetak serta mesin pertanian.



      edit
Published 8:17 PM by Admin with 0 comment

Decoder adalah - Pengertian Decoder, Jenis & Aplikasinya

Decoder adalah rangkaian yang mengubah kode menjadi satu set sinyal. Disebut sebagai decoder karena dapat melakukan kebalikan dari pengkodean. Dalam proyek elektronika digital, decoder memiliki peran yang cukup penting karena decoder adalah salah satu teknik transfer data dari satu bentuk ke bentuk lainnya.

Pengertian Decoder


Secara sederhana, dapat dikatakan bahwa decoder adalah kebalikan dari encoder. Decoder adalah rangkaian kombinasi yang memiliki jalur input ‘n’ dan maksimum jalur output 2n. Salah satu dari output ini akan menjadi "Aktif Tinggi" berdasarkan kombinasi dari input yang ada ketika decoder diaktifkan.

Dengan kata lain bahwa decoder adalah rangkaian yang mampu mendeteksi kode tertentu. Output dari decoder tidak lain adalah syarat minimum dari baris variabel input ‘n’, ketika diaktifkan.

Jenis Decoder


Adapun tipe atau jenis decoder adalah sebagai berikut

Decoder 2 ke 4


Merupakan jenis decoder yang memiliki 2 input 4 output. Kita misalkan 2 input yaitu A1 dan A0 dan 4 output yaitu Y3, Y2, Y1 dan Y0. Maka diagram blok decoder 2 ke 4 ditunjukkan pada gambar dibawah ini.

Gambar-Diagram-Blok-Decoder-2-ke-4

Salah satu dari empat output ini akan menjadi '1' untuk setiap kombinasi input saat diaktifkan, E adalah '1'. Adapaun Tabel Kebenaran dari decoder 2 ke 4 ditunjukkan pada gambar dibawah ini.

Gambar-Tabel-Kebenaran-Decoder-2-ke-4

Dari tabel kebenaran diatas, kita dapat menulis fungsi Boolean untuk setiap output decoder tersebut

Y3=E.A1.A0
Y2=E.A1.A0
Y1=E.A1′.A0
Y0=E.A1′.A0

Setiap output memiliki satu produk. Jadi, secara total ada 4 produk. Kami dapat menerapkan ke-4 produk ini dengan menggunakan empat gerbang AND yang masing-masing memiliki tiga input & dua inverter. Diagram rangkaian dari decoder 2 ke 4 ditunjukkan pada gambar dibawah.

Gambar-Rangkaian-Diagram-Decoder-2-Ke-4

Oleh karena itu, output dari decoder adalah "min terms" dari dua variabel input A1 & A0, ketika aktif, E adalah 1. Jika tidak diaktifkan, E adalah nol, maka semua output decoder adalah sama dengan nol.

Decoder 3 ke 8


Merupakan merancang decoder 3 ke 8 maka kita menggunakan decoder 2 ke 4. Seperti yang telah diketahui decoder 2 ke 4 memiliki 2 input dan 4 output, jadi decoder 3 ke 8 memiliki 3 input yaitu A2, A1 & A0 dan 8 input yaitu Y7 to Y0.

Untuk merancang decoder yang lebih tinggi mengguakan decoder yang lebih rendah, kamu bisa menggunakan rumus berikut :

M2/M1

Dimana:

Madalah Jumlah ouput decoder yang lebih rendah
Madalah Jumlah ouput decoder yang lebih tinggi

Sebagai contoh pada pada decoder 3 ke 8, M1 = 4 dan M2 = 8, maka dengan menggunakan rumus diatas maka jumlah pengatur urutan yang lebih rendah diperlukan sebanyak 2.

Dengan kata lain, diperlukan 2 decoder 2 ke 4 untuk merancang 1 decoder 3 ke 8. Berikut ini adalah diagram bloknya

Gambar-Diagram-Blok-Decoder-3-ke-8

Input paralel A1 & A0 diterapkan pada setiap decoder 2 ke 4. Komplemen input A2 langsung terhubung aktif, E dengan decoder 2 ke 4 yang bawah untuk mendapatkan output, Y3 sampai Y0. Ini adalah 4 min terms rendah

Input, A2 langsung terhubung aktif, E dari decoder 2 ke 4 yang atas didapatkan output berupa Y7 ke Y4. Ini adalah 4 min terms tinggi.

Decoder 4 ke 16


Untuk merancang decoder 4 ke 16 maka dapat digunakan decoder 3 ke 8. Seperti yang diketahui Decoder 3 ke 8 memiliki tiga input A2, A1 dan A0 dan delapan output, Y7 ke Y0. Sedangkan decoder 4 ke 16 Decoder memiliki 4 input yaitu A3, A2, A1 dan A0 dan 16 ouput yaitu Y15 hingga Y0.

Dengan menggunakan rumus M2/M1, subtitusikan M1 = 8 dan M2 = 16 maka dbutuhkan sebanyak 2 buah decoder yang lebih rendah. 

Dengan kata lain, diperlukan 2 decoder 3 ke 8 untuk merancang 1 decoder 4 ke 16. Berikut ini adalah diagram bloknya. 

Gambar-Diagram-Blok-Decoder-4-ke-16


Input paralel A2, A1 & A0 diterapkan ke masing-masing decoder 3 ke 8 .Komplemen dari input A3  terhubung aktif, E dari decoder 3 ke 8 yang bawah untuk mendapatkan output Y7 hingga Y0, ini adalah 8 min terms rendah. Input A3 terhubung aktif, E dari decoder 3 ke 8 yang atas untuk mendapatkan output Y15 hingga Y8. Ini adalah 8 min terms tinggi.

Aplikasi / Kegunaan Decoder


Berikut ini kami sajikan beberapa aplikasi atau kegunaan decoder yaitu
  1. Pada setiap komunikasi nirkabel, keamanan data adalah salah satu perhatian utama. Disini decoder dirancang untuk memberikan keamanan pada komunikasi data dengan membangun enkripsi standar dan algoritma dekripsi.
  2. Decoder digunakan dalam sistem audio untuk mengubah audio analog menjadi data digital.
  3. Digunakan sebagai dekompresor yaitu mengubah data terkompresi seperti gambar dan video ke dalam bentuk dekompresi.
  4. Decoder juga digunakan sebagai rangkaian elektronik yang mengubah instruksi komputer menjadi sinyal kontrol CPU.

      edit